Research Project Portals


  • Garfield - геном 10К

    Гарфилд — Геномный браузер

    Геномный браузер является эффективным средством не только для представления генетической информации в наглядном виде и сравнения расположения геномных элементов, но и для аккумулирования генетической информации о конкретных видах организмов. В Центре Т. Добржанского геномный браузер использован для представления существующей и вновь полученной информации о геноме домашней кошки.

    Браузер доступен по адресу Названный Гарфилдом по имени симпатичного кота из мультфильма. Первоначально геномный браузер основывался на платформе JBrowse, и постепенно переместился на другую платформу, основанную на платформе UCSC. Опыт использования браузера и работы с ним на геноме домашеней кошки будет перенесен на другие виды огранизмов в рамках проекта.

  • GMTV - база данных геномных вариантов микобактерии туберкулеза

    GMTV - база данных геномных вариантов микобактерии туберкулеза

    Исследование геномов клинических штаммов возбудителя туберкулеза - Mycobacterium tuberculosis, посвящено поиску маркеров, ассоциированных с клиническими и микробиологическими характеристиками патогена на основе данных полногеномного секвенирования.

    Сотрудниками Центра создана база данных геномных вариаций штаммов M. tuberculosis, распространенных по всему миру, объединяющая генетические, клинические, микробиологические и географические данные (GMTV). Исследования ведутся совместно с Санкт-Петербургским НИИ фтизиопульмонологии, Санкт-Петербургским НИИ эпидемиолонии и микробиологии им. Пастера, и поддержаны грантами РФФИ и СПбГУ.

  • GWATCH проект

    GWATCH - web-based genome browser for genome-wide association studies

    GWATCH is a web-based genome browser designed to automate analysis, visualization and release of data from genome-wide association studies (GWAS) and whole genome sequence association studies of genetic epidemiological cohorts. For any association study, GWATCH allows cataloging and viewing of significant statistical results of association tests (p-values, odds ratios, hazard ratios and others) for single or multiple variants (SNP, indels, CNV), for single or multiple tests.

    GWAS data are collected and subjected to quality control (call rates by individual and by SNP etc.) by the researchers. Statistical association tests are designed to help detect genetic differences among study groups with alternative phenotypes or disease outcomes. Each SNP-test combination includes information on patient counts by category, p-values and a Quantitative Association Statistic (QAS, a general term for statistics explaining direction and strength of associations: odds ratio, hazard ratio, relative hazard and so on, depending on the particular statistical test). An unabridged data file listing association test, categorical patient counts, p-values and QAS for each SNP-test combination comprises the initial input to GWATCH.

    It is also possible, even desirable, that each association test conducted is entered as an analytical routine, as well as SNP genotyping and clinical category designation of study participants. Note that all identifiable genotypic, demographic or clinical data are kept hidden to protect patient privacy permanently.

    The display features of GWATCH allow for numerous views of the results which are routinely considered by genetic practitioners.

    The promise of GWATCH falls into four general applications:

    • Automates gene association search and discovery analysis.
    • Advances display of results from Manhattan plots to 2D and 3D snapshots of any gene region and dynamic chromosome highway browser.
    • Allows real time validation/replication of candidate and discovered genes from other sources limiting Bonferroni penalties.
    • Offers solution to privacy constraints on unabridged data sharing and release.
  • Бохера проект

    Сборка, аннотация и сравнительный анализ геномов апомиктичных видов Boechera

    Руководитель проекта В.Б.Брюхин

    Apomixis is asexual way of plant reproduction through seeds, which could be found in more than 400 plant species representing almost 40 families. It is believed that apomixis evolved independently in several taxa from sexual ancestors. Apomixis could be considered as a developmental variation of sexual reproduction in which some steps are lost, reduced, deregulated or desynchronized (Fig.1). The main features of gametophytic apomixis are:

    • Avoidance of meiosis (apomeiosis);
    • Embryo formation via parthenogenesis;
    • Functional endosperm develops either autonomously or pseudogamously (central cell fertilized by sperm cell).

    Thus, apomictic and sexual reproduction are closely related and share many regulatory components. Molecular and genetic basis underlying apomixis and amphymixis (sexual reproduction) regulation still remains poorly understood. If apomixis is engineered in crop plants that will revolutionize agriculture as heterosis can permanently be fixed in many consecutive plant generations. So, a better understanding of the molecular basis of apomixis is important. The potential of apomixis as a next generation technology for plant breeding attracts huge interest of scientists to elucidate the molecular and genetic mechanisms of its regulation.

    Closely related to the model plant Arabidopsis thaliana, the genus Boechera (Fig. 2) is known to contain both sexual and apomictic species or accessions. Boechera genome hybridogenic origin is supported by the aberrant structure of their chromosomes, as they are often observed as a consequence of hybridization, leading to alloploidy, aneuploidy, the replacement of homeologous chromosomes, and aberrant chromosomes. B. stricta and B. retrofracta are conditionally diploid sexually reproducing species and is thought to be an ancestral parent species of apomictic accessions (Fig. 3). In our research, we are attempting to de novo assemble and to annotate whole genomes and find differences between sexual and apomictic accessions of Boechera. We exploit the Illumina and Pacific Bioscience next generation sequencing platforms. The species B. divaricarpa includes both apomictic and sexual accessions. The apomictic accessions are diploid and produces up to100% seeds with a 2:6 embryo: endosperm ratio, indicative of efficient apomeiosis, parthenogenesis of the unreduced (2n) egg, and pseudogamous fertilization of the central cell with unreduced (2n) pollen. Apomixis usually occurs in polyploid perennial species, while diploid species of the same genus reproduce sexually. However several diploid accessions of Boechera possess a high penetrance of apomixis. Apomictic B. divaricarpa has been the focus of genetic, cytological (Fig. 4), and ecological studies, due to its close relatedness to the model plant Arabidopsis thaliana. We also perform phylogenetic and evolutionary analysis of the apomixis associated genes (Fig. 5). Assembly and correct annotation of highly heterozygous genomes of hybrid apomictic species such as B. divaricarpa genomes will provide a basis to decipher the hybridogenetic events that led to the formation of apomictic Boechera accessions.

    Study of genetics and genomics of apomixis facilitates to understanding of the role of heterozygosity in the transition from sexual to the asexual reproduction and also evolution of apomixis as a means of reproductive plasticity, which helps to the survival of the species.

    Fig. 1. Schematic representation of sexaual and apomictic development.

    The left side of the figure shows the sexual pathway and sporophytic apomixis (adventive embryony). In the sexual pathway the megaspore mother cell (MMC) undergoes two meiotic divisions producing a tetrad of megaspores. Three megaspores degenerate while the functional megaspore gives rise to the embryo sac following three rounds of mitotic divisions (female gametophyte = megagametophyte). The mature embryo sac is 7-celled, 8-nucleate with the egg cell and synergid cells (egg cell apparatus) located at the micropylar pole of the embryo sac and three antipodal cells at the opposite pole. Two polar nuclei fuse to form the diploid nucleus of the central cell. After double fertilisation, one sperm fuses with the egg cell forming the diploid zygote, whereas the second sperm fertilises the central cell producing the first nuclei of triploid endosperm. Synergids participate in the perception of the sperm cells and burst after fertilisation. The mature seed consists of the diploid embryo, the triploid endosperm (nourishing tissue) and remnants of the maternal sporophytic nucellar and integumental tissues form the seed coat. An adventive embryo may develop from the nucellar or inner integumental sporophytic tissues and develop alongside the sexual embryo.

    The Right part of the figure shows gametophytic apomixis. Meiosis is bypassed and consequently reduction is avoided. Embryo sac development is initiated from an unreduced diplospore (diplospory) or from an apospory initial cell (apospory). The embryo develops parthenogenetically from the unreduced egg cell while endosperm forms either autonomously or through fertilisation of the central cell (in case of pseudogamy). The mature apomictic seed contains the embryo with a relative ploidy level of 2n, while the endosperm could be of variable ploidy but usually not less than 4n.


    Fig. 2 Boechera sp. plant and inflorescence

    Fig. 3 Circos plot for B. retrofracta and B. stricta (sexual ancestors of apomictic B. divaricarpa). Since both assemblies are performed on a scaffold level, it is difficult to hilghlight any large genome rearrangements. However, this plot is a visual way to represent the scatteredness of both assemblies.

    Fig. 4 Apomeiosis during megasporogenesis in B.holboellii s.l. A: Megaspore Mother Cell (MMC); B: Diplospory Diad (Dy); C: Single nuclear Diplosporic Embryo Sac (DES) with the remnants of "megaspore" (“MS”); D: callose in the cell wall of the diplosporic dyad

    Fig. 5 Phylogenetic tree of the isoforms of APOLLO locus (exonuclease NEN) that is tightly associated with apomixis in Boechera. Seven Brassucaceae species were chosen to help to analyse evolution of homologs of APOLLO locus of apomictic Boechera species from Corral et al (2013). Sequences of Populus trichocarpa, Vitus vinifera and Glycine max were used as outgroup. The clade related to the APOLLO locus is shown in blue, with apo-alleles shown in red. Numbers near nodes represent corresponding bootstrap support. Branches in the tree are grouped by genes rather than by species, suggesting that the triplication event took place before the separation of the Brassicaceae species. Branch leading to apo-alleles is under positive selection (Ka/Ks 1.4646), which is typical for paralogues that are required to serve a novel function.

  • Проект Российские геномы

    Проект Российские геномы

    Гены являются основной «инструкцией» для функционирования клеток, из которых состоит организм человека. Гены входят в состав геномной ДНК. Более 99% последовательностей ДНК у всех людей идентично. Однако не существует двух людей, имеющих полностью одинаковую последовательность ДНК, за исключением однояйцевых близнецов. Индивидуальные отличия последовательностей ДНК называются генетическими вариациями. Они объясняют некоторые физические различия между людьми и частично объясняют, почему у одних людей возникают такие болезни, как рак, диабет, астма, депрессия и пр., в то время как у других этих болезней не бывает. На возникновение упомянутых выше заболеваний могут оказывать влияние такие факторы, как диета, физические упражнения, курение и загрязнение окружающей среды, что затрудняет точное выяснение, какие именно гены влияют на болезни.

    Целями проекта «Российские геномы» является создание открытой компьютерной базы данных, содержащей анонимную информацию о полногеномных последовательностях по меньшей мере от 3000 мужчин и женщин из разных регионов России, чьи предки являются коренными жителями данного региона в нескольких поколениях, а также описание вариаций в геноме у этих групп, определение особенностей, влияющих на распространение заболеваний, и создание информационной базы медицински-значимых геномных вариантов, характерных для населения России, что станет основой для разработки принципов медицины будущего.

    Полученные в ходе проекта данные будут использоваться для многих целей, однако четырьмя основными целями являются:

    • Обнаружение новых генетических вариантов, которые являются специфическими для определённых российских этнических и региональных групп;
    • Изучение генетических вариантов, влияющих на частоту известных болезней среди российского населения;
    • Получение карты основных гаплотипов (совокупность генов на хромосоме, наследуемых вместе) российского населения, необходимой для идентификации маркеров генов, связанных с наиболее часто встречающимися болезнями среди разных групп россиян;
    • Интерпретация закономерностей вариабильности геномов человека для расшифровки исторических путей миграции и оседлостей человека по современной территории России и Евразии;
    • Разрабатываемые в рамках данного проекта научные базы данных, не будут включать в себя какой-либо личной информации.

    Санкт-Петербургский государственный университет является основным спонсором проекта, а Центр геномной биоинформатики им. Ф.Г. Добржанского Санкт-Петербургского государственного университета является координатором исследовательского консорциума, созданного для выполнения этого проекта.

  • Фолликулярная лимфома - проект

    Фолликулярная лимфома

    Проект направлен на изучение фундаментальных основ взаимодействия опухоли и микроокружения при фолликулярной лимфоме, злокачественной опухоли лимфатической системы. Несмотря на эффективность терапии первой линии, обеспечивающей подавление роста опухолевых клеток, это заболевание остается неизлечимым и у 20% пациентов наблюдается рецидив в течение первых двух лет терапии. Понимание механизмов развития резистентности и поиск ранних прогностических маркеров остается одной из актуальных задач.

    Фолликулярная лимфома представляет собой сложноорганизованную структуру, и помимо трансформированных В-лимфоцитов содержит широкий спектр неопухолевых клеток. Было показано, что клеточный состав неопухолевого микроокружения влияет на результаты терапии, однако конкретные механизмы межклеточных взаимодействий, приводящие к развитию резистентности, остаются до сих пор неизвестными.

    Новые технологические платформы на основе микрофлюидики и высокопроизводительного секвенирования позволяют анализировать состояние транскриптома и генома отдельных клеток в составе опухоли и ее микроокружения. В настоящем проекте планируется использование комплекса современных методов, включая РНК-секвенирование отдельных клеток, для изучения фундаментальных основ взаимодействия опухоли и микроокружения и поиска ранних прогностических маркеров, позволяющих выявлять пациентов с высоким риском развития рецидива.

Феодосий Григорьевич Добржанский, советский и американский генетик российского происхождения, энтомолог, один из основателей синтетической теории эволюции.

Больше информации о ...

Руководители Центра

Анастасия Самсонова

Профессор, руководитель Центра


Александр Канапин

Профессор, зам. руководителя Центра


Стефан Джеймс О'Брайен 

Главный научный сотрудник, научный консультант  

Стефан Джеймс О’Брайен руководил лабораторией геномного разнообразия Национального ...

Лабораторные новости

На сайте СПбГУ опубликована статья о проекте. Статья посвящена научной публикации сотрудников Центра.

27 сентября 2019 (пятница) в 14:00: Dr. Kirill Vinnikov from Hawaii University (USA) and head of the lab at the Far Eastern Federal University (Vladivostok) "Exome sequencing of non-model species"